11 research outputs found

    Challenges in network science: Applications to infrastructures, climate, social systems and economics

    Get PDF
    Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected

    Challenges in network science: Applications to infrastructures, climate, social systems and economics

    Full text link

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    Challenges in network science: Applications to infrastructures, climate, social systems and economics

    Get PDF
    ISSN:1951-6355ISSN:1951-640

    Vulnerability of network of networks

    No full text
    Our dependence on networks – be they infrastructure, economic, social or others – leaves us prone to crises caused by the vulnerabilities of these networks. There is a great need to develop new methods to protect infrastructure networks and prevent cascade of failures (especially in cases of coupled networks). Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How, and at which cost can one restructure the network such that it will become more robust against malicious attacks? The gradual increase in attacks on the networks society depends on – Internet, mobile phone, transportation, air travel, banking, etc. – emphasize the need to develop new strategies to protect and defend these crucial networks of communication and infrastructure networks. One example is the threat of liquid explosives a few years ago, which completely shut down air travel for days, and has created extreme changes in regulations. Such threats and dangers warrant the need for new tools and strategies to defend critical infrastructure. In this paper we review recent advances in the theoretical understanding of the vulnerabilities of interdependent networks with and without spatial embedding, attack strategies and their affect on such networks of networks as well as recently developed strategies to optimize and repair failures caused by such attacks

    From human mobility to renewable energies -Big data analysis to approach worldwide multiscale phenomena

    No full text
    We address and discuss recent trends in the analysis of big data sets, with the emphasis on studying multiscale phenomena. Ap- plications of big data analysis in different scientific fields are described and two particular examples of multiscale phenomena are explored in more detail. The first one deals with wind power production at the scale of single wind turbines, the scale of entire wind farms and also at the scale of a whole country. Using open source data we show that the wind power production has an intermittent character at all those three scales, with implications for defining adequate strategies for stable energy production. The second example concerns the dynamics underlying human mobility, which presents different features at different scales. For that end, we analyze 12-month data of the Eduroam database within Portuguese universities, and find that, at the smallest scales, typically within a set of a few adjacent buildings, the characteristic exponents of average displacements are different from the ones found at the scale of one country or one continent.Fundação para a Ciência e a Tecnologia (FCT
    corecore